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Abstract—Electronic System Level has brought new 
abstractions for designing systems, which most designers are 
not familiar with. The Space Codesign™ SystemC design 
framework allows designers to easily model 
hardware/software-based systems, starting from a high level 
model and refining down to the chip. We propose a rapid 
system prototyping toolset that permits co-monitoring of 
specifications, effortless platform exploration for 
hardware/software partitioning and an automated co-synthesis 
for rapid FPGA implementation. We demonstrate the 
methodology by implementing the guiding system of a land 
rover application. More precisely, we focus on the architecture 
exploration effort by looking at the partitioning aspects using 
an IBM CoreConnect OPB bus cycle accurate model, and a 
MicroBlaze ISS. We collect different mapping results to guide 
the implementation down to a Xilinx Virtex-II Pro FPGA. 
Results prove that first working at the system level 
significantly helps in targeting an efficient hardware/software 
solution. 

I. INTRODUCTION 
Technological innovations have undeniable effects on 

circuit design complexity; more complex components, 
including on-chip processors, are integrated, and there are 
growing customer needs in a narrowing time-to-market era. 
These issues lead us to the necessity of rethinking how 
engineers design these circuits. One proposed solution, 
Electronic System Level (ESL)  [1] [2], relieves the design 
pressure by raising the level of abstraction for system 
modeling, which handles both hardware and software 
component specifications and captures constraints. ESL 
offers tremendous possibilities for: 

• creating and designing simulation platforms containing 
processors and coprocessors, communication channels, 
memories and peripherals, at different levels of 
abstraction; 

• creating and verifying functional application models; 

• exploring different mappings of a functional application 
onto a specified architectural platform, to validate 
specification constraints; 

• refining to lower abstraction levels (e.g. RTL describing 
pins, events and delta cycles, cycle true timing) and real 
implementation behaviors, mainly for verification 
purposes.  

ESL brings new possibilities for system design features 
that positively influence the early phases of the system 
design flow. Transaction Level Modeling (TLM)  [3], a major 
subset of ESL, mostly insists on the abstraction of the 
communications between processes in order to accelerate 
simulations and to provide a reliable analysis of possible 
system performances. Transactions can be described at 
different levels of abstraction, from high-level message 
passing schemes down to typical bus-oriented cycle-by-cycle 
transactions. Different optimizations are possible depending 
on the desired simulation accuracy. ESL offers to capture 
specifications in various ways, based on different in-house 
designed simulators, graphical tools or programming 
languages, such as C/C++, SystemC, SystemVerilog or 
others, or a mix of these solutions. 

Well known TLM platforms already exist. For instance, 
the SystemC OSCI TLM package  [4], proposes to use layers 
to classify the different possible abstractions of TLM. Also, 
SystemC OCP  [5] was one of the first works in the field and. 
Finally, GreenBus  [6], which objective is to offer an open 
source standard interconnect model. Specific needs can also 
be filled with custom implementations as well: as an 
example,  [7] used SystemC for interfacing an ARM 
Instruction Set Simulator (ISS) in a SoC implementation.  

Depending on the level of abstraction selected, 
simulations will perform better than typical Register Transfer 
Level (RTL), as shown in  [8] and  [9]. As said by these 
authors, many optimizations are possible to increase 
performance up to a factor of 100, but all affect the accuracy 
of the simulations, one way or another. 

Once the ESL design of the application is done, a 
technique for migrating it to a chip is required. Professional 
synthesis tools exist but are limited and not open to 
everyone’s budget. A general recoding phase is required to 
create hardware blocks, software embedded code, interfaces 
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and wrappers. Platform-based design is an interesting 
compromise to avoid having too much to recode and to meet 
time-to-market constraints. Another rapid prototyping 
solution is  [10], which mixes a set of different tools for 
simulating and exporting a DSP-based MP3 decoder 
application with an Atmel processor. This brings interesting 
results though the methodology is closely coupled to the 
architecture they use. 

In this paper, we will look at the value of the Space 
Codesign toolset for investigating different 
hardware/software partitions at a bus cycle accurate level, 
using Space Codesign Simtek, which allows the simulation 
of a bus cycle accurate version of the specification. We have 
developed a base platform including the IBM CoreConnect 
OPB Bus, a library of IP and wrappers and the Xilinx 
MicroBlaze Instruction Set Simulator (ISS) to emulate a true 
implementation of a physical platform. All details on bus 
performances, communication and computation times can be 
gathered for system performance evaluation using our co-
monitoring engine. Once all simulations are terminated, an 
automated co-synthesis process can be used to move down to 
Xilinx Virtex-II family FPGA.  

Our technology and development environment will be 
explained in section II. We used this environment to develop 
a land rover case study, described in section III and depicted 
in Figure 1. Details of the simulation and FPGA 
implementations are given in section IV, while results are 
discussed in section V. 

II. THE SPACE CODESIGN™ TECHNOLOGY 
The Space Codesign technology integrates interesting 

features of electronic system design and simulation, such as 
drag and drop Hw/Sw partitioning, Hw/Sw co-monitoring 
and extensive embedded software support with abstracted 
RTOS complexity. With Space Codesign, the use of the 
SystemC language is simplified to offer software designers a 
transparent solution to the lack of software support in 
SystemC  [13]. A simplified application programming 
interface (API) and a fast communication manager handle all 
platform communications. 

The development environment (see Figure 2) integrates 

these features in an intuitive design framework. This work 
originated from SPACE, a platform oriented towards 
embedded software design, as presented in  [12]  [13]. Since 
this publication and as described in this paper, several 
additions were brought into the SPACE platform, for 
instance, different instruction set simulators, a bus cycle 
accurate communication model as well as support for a high 
abstraction level for software simulations. Moreover, a 
complete set of tools, including a graphical user interface and 
co-monitoring were integrated. 

A. Elix 
The Space Codesign Elix technology, sometimes 

described as Programmer’s View  [17], contains tools for 
early stages of the design flow and mainly serves for model 
or application validation and fast architecture exploration. 
With Elix, one can, in a straightforward but specialized 
SystemC environment, create an untimed or timed functional 
model of the application to implement. Communication 
between SystemC modules (tasks, threads, user modules, or 
processes, as preferred) is based on message-passing 
rendezvous. Using a shared memory to exchange data is also 
possible. Simple methods are available for communications 
with modules, or devices (typically slave components) which 
removes the usual complexity of system-on-chip 
communication protocols. Channel communications can be 
untimed or timed according to a user-customized or 
predefined bus model delay scheme (such as IBM 
CoreConnect PLB/OPB and ARM AMBA).  

All simulations bring preliminary results about system 
performance results and expected hardware/software 
behavior, as the RTOS and a set of RT tasks are getting 
integrated into the simulation model. A processor simulator 
is run as a SystemC module and executes software code on 
the host machine, for faster results than with bus cycle 
accurate models. Regardless of the mapping of a specific 
module, hardware or software, a proper routing of messages 
is performed by the communication manager. These 
preliminary results are used to guide lower abstraction design 
analysis, using Simtek. 
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Figure 1.  Picture of the land rover revealing its main systems 
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Figure 2.  The Space Codesign™ Technology 



B. Simtek 
The Space Codesign Simtek technology can simulate a 

bus cycle accurate replica of a real architecture and its 
behaviors, including transactions over a specific bus 
protocol, hardware wrappers to encapsulate custom IPs, a 
collection of user-accessible platform-specific IP devices, 
such as memories, timers, controllers and I/Os, as well as 
instruction set simulators for cycle-accurate software 
execution. This abstraction produces results that can be 
analyzed, debugged and monitored. 

The communication interface of Simtek is the same as 
Elix’s simplifying the refinement of the specifications. At 
this stage, users may want to include behavioral timing 
annotations to better simulate the execution time of the 
hardware user modules. In fact, annotations can be added at 
anytime in the design flow: they are simply ignored in an 
untimed environment. They are also ignored if the module is 
mapped into software, because of the cycle-accurate 
execution of software.  

C. SpaceStudio 
SpaceStudio is an Eclipse-based development 

environment  [14] for Elix and Simtek. The major advantage 
for using Eclipse for Electronic Design Automation is that it 
simplifies third-party tool integration. SpaceStudio (Figure 
3) lets designers browse through architecture and component 
libraries to create a parameterized Elix or Simtek systems. 
Architectural exploration lets users discover different system 
configurations (e.g. processors and buses, code mapping on 
hardware or software, hardware coprocessors, etc.) typically 
not considered when working at the Register Transfer Level 
(RTL), because the work implied to experiment with such 
possibilities is enormous. With the help of SpaceStudio, one 
can drag and drop SystemC blocks into a hardware-software 
architecture of its own. Once blocks are mapped by the user, 
the final architecture and mapping can generate SystemC 
code and be executed/debugged or cross-debugged. GNU-
based debuggers are available for the hardware platform, for 
SystemC hardware blocks, and for embedded software. 
Hardware/software co-debugging offers a better interaction 
with the user and the application being designed, when 

searching to understand bugs or problems. 

System parameter setting is abstracted, kept simple and is 
centralized in a configuration manager window accessible 
through wizards. Nearly all platform connections are 
automatically generated, letting the user focusing on custom 
connections. This environment permits to rapidly explore 
hardware/software systems, analyze results, fine tune 
mapping, regenerate and recompile. 

D. Co-monitoring 
SpaceStudio integrates real time co-monitoring tools to 

maximize programmers’ efficiency. The co-monitoring 
engine monitors and analyzes the performance of the system. 
The instrumentation of the platform models and API allows 
for the collection of metrics on the execution time of 
hardware user modules and on channel/bus, memory and 
processor usage. Also, a non-intrusive instrumentation of 
instruction set simulators monitors RTOS context switches 
and calls to communication functions. This powers the 
collection of metrics on the execution time of software user 
modules and on communications between all user modules, 
no matter whether the communications are between 
hardware modules, between software modules or are 
crossing the hardware/software partition. This co-monitoring 
is transparent to user code and is automatically adjusted each 
time a user module is moved from hardware to software (or 
vice-versa). The collected metrics can be accessed through 
an API or viewed through a GUI featuring statistical plots, 
global heatmaps or Gantt charts. 

For complete technical information about the co-
monitoring features, please refer to  [19]. 

E. Exporting to FPGA 
To physically implement Hw/Sw partitioned solutions, 

we extend the Space Codesign technology to the 
implementation level. At this stage, hardware (e.g.: muxes, 
ALUs, decoders, memories) is described in terms of register 
transfers executed every clock cycle (i.e. the RTL), and 
software is a sequence of instructions including user target 
code linked with the RTOS. The transformation from a 
transactional level (Elix, Simtek) to an implementation level 
is referred to as hardware/software co-synthesis. It is 
considered one of the most challenging tasks in embedded 
design involving system-on-chips. For the case of an 
implementation based on the Xilinx Virtex II-Pro FPGA, an 
implementation layer is already provided by the EDK 
(Embedded Development Kit) from Xilinx. EDK is an 
application for designing embedded programmable systems 
based on the Virtex II-Pro. This pre-configured kit includes 
all the tools and IP required for designing the 
implementation level of a hardware/software system. 
Therefore, the Space Codesign technology performs a 3-step 
automated co-synthesis process between Simtek and EDK: 

• Software generation is completely automatic. The 
user software modules/tasks and the RTOS are 
compiled for the embedded processor. As a first 

 
Figure 3.  The SpaceStudio Development Environment 



step, the μC/OS-II RTOS  [15] has been selected. 
μC/OS-II offers all the advantages of a micro-kernel: 
task preemption, a priority based task scheduler and 
an interrupt system. As explained in  [13], the 
SystemC function calls are mapped to µC/OS-II 
equivalents.  

• The Space Codesign approach is based on IP-reuse. 
IP are packaged for reuse at different levels of 
abstraction in the design cycle, such as the functional 
(SystemC transactional) level and the RTL (VHDL). 
IP can come from within a company or from third-
party vendors. Hardware synthesis of user processes 
can be accomplished with behavioral synthesis tools 
that transform timed functional models into fully 
timed RTL models. This synthesis is not performed 
by the Space Codesign technology, but by external 
FPGA/IC development tools, such as Forte Designs 
Cynthesizer  [16].  

• Communications synthesis is also processed. IBM 
CoreConnect wrappers are required to connect IP to 
a channel (for the transactional level) and to a bus 
(for RTL). As RTL IP wrappers called IPIF (Xilinx 
Intellectual Property InterFace) can be automatically 
generated using the Xilinx Import Peripheral 
Wizard, a corresponding timed functional SystemC 
library of IPIF is reproduced for simulation. Also, a 
hardware/software communication manager is 
generated, which provide access to the message 
passing. 

Ultimately, SpaceStudio reads the system configuration 
created by the user and generates all the required input files 
for EDK.  

III. A LAND ROVER CASE STUDY 
As a case study, the guiding system of a rover simulator 

has been implemented. This system is composed of 5 sub-
modules which can independently be partitioned and mapped 
to explore, simulate and analyze the performance of different 
design possibilities. Figure 1 shows a 3D-model of the rover 
itself. 

A. Environment Specifications 
The world the rover evolves in is a virtual world. For 

sake of simplicity and simulation, we describe this world as 
an NxN array in which the rover moves. The rover’s location 
in this array is denoted as Nx and Ny. Also, the rover has an 
angle ω that characterizes its direction in this world (0 being 
East, 45° being N-E, and so on).  

The rover’s mission is to follow a trail traced on the 
ground, and to never leave this trail. The rover is equipped 
with a front frame camera that scans the soil; taking pictures 
of the trail at different moments in time. The rover has a 
Pulse Width Modulator (PWM)-style engine installed on 
each front wheel as a forward motion mechanism. The rover 
can move with a maximal speed Vmax, which is modulated by 

the pulse of the left L and right R engines. Once again, for 
sake of simplicity, we set V = ½(R+L)•Vmax, the speed of 
the rover at anytime. The rover is controlled by two systems 
communicating through a RS232 serial link:  

• a positioning system that fires camera snapshots and 
calculates the position Nx and Ny and the angle ω of 
the rover in the virtual world, within a period of 500 
to 1000 ms depending on the operations to 
accomplish. RS232 transmissions take 0.6ms per 
byte sent. This system is a fixed test bench which 
cannot be changed. 

• a guiding system that analyzes the camera images to 
establish the new direction the rover should take to 
follow the trail. This system is implemented using 
the Space Codesign technology. Also, in regards to 
this new direction, the guiding system calculates the 
new L and R pulses to apply to the positioning 
system, and sends it these new pulses. 

The execution loops indefinitely.  

B. Rover Specifications 
As a case study, the guiding system of a land rover was 

implemented in SpaceStudio to demonstrate the value-added 
of the Space Codesign technology and toolset.  

The guiding system is split into 5 different modules 
described into Table I. It could have been separated even 
more or differently or it could be implemented in a complex 
manner to represent more closely a real guiding system, the 
purpose here is primarily to demonstrate the methodology.  

TABLE I.  DESCRIPTION OF THE ROVER’S GUIDING SYSTEM 

Module Name Description 
UART (U) RS232 UART receiving an 8x8 pixel array from the 

positioning system’s camera and sending out engine 
power coefficients and nearby object detection status. 

Image 
Analyzer (I) 

Hw/Sw module collecting data from UART, analyzing 
the image to determine the rover’s direction (ω).  

Angle 
Calculator (L) 

Hw/Sw module converting the direction taken ω into an 
angle α the rover should take in regards with the trail. 

Engine 
Controller (C) 

Hw/Sw module determining, based on current and new 
direction, as well as previous engine coefficients, the 
new coefficients to apply to the left and right engines. 
Reduces speed by a factor 2 when undesired objects are 
nearby. 

Filter (F) Hw/Sw module correcting pixels received from the 
camera. Simply corrects the data to threshold values (e.g. 
on 8 bits, value 0xFD becomes 0xFF).  

Object 
Detector (O) 

Hw/Sw module observing the image coming in the 
guiding system and searching for objects (trees and 
rocks). Will notify the Engine Controller when such 
objects are detected. 

 

As shown in Figure 4, a UART receives the image 
information taken from the positioning system. For our 
purposes, this image is an 8x8 pixel frame: each pixel is a 
byte representing a soil area crossed or not by the trail. The 
received image is first read by the Image Analyzer (I), which 



redirect it to a filter that flattens the pixel values. Then, the 
analyzer calculates, based on the rover’s direction, the new 
direction ε the rover should be taking. This value is sent to 
an Angle Calculator which transforms this ε factor into an 
angle α. The Angle Calculator can be implemented as a 
custom look-up table, or more sophisticatedly as a CORDIC-
like IP, depending on the precision needed.  

Then, an Engine Controller takes α and based on the 
current speed V, and direction ω, calculates the new L and R 
pulses to be applied to the engines. In the meantime, an 
Object Detector will receive the pixels and search for 
interfering objects nearby the trail. Information about the 
presence of objects will be sent to the Engine Controller, 
which will generate a reduced speed as these objects are 
getting closer.  

The positioning system is implemented in a Windows 
process. The world of the rover itself is plotted as an 
OpenGL scene. Four threads cover the functionality, one for 
RS232 communications, one for emulating the camera 
sweeping the trail, one for calculating the position of the 
rover based on engine L and R values and a last one for 
rendering the 3D world. 

IV. IMPLEMENTATION DETAILS OF THE GUIDING SYSTEM 
Our goal is to implement different hardware/software 

configurations of the land rover’s guiding system. All 
software partition code will be compiled on µC/OS-II with 
our SystemC to OS conversion mechanism.  

A. Simulation Implementation 
The UART is considered as a device in the system, and 

thus, it is fixed into the hardware partition. All other modules 
can move from hardware to software, independently. 
Moreover, the Xilinx UART-Lite IP has a 16-byte buffer. A 
UART was used instead of a TCP/IP link for the somewhat 
low data rate of the communications. Nevertheless, the 
method is scalable to any rate/type of communications. 

Messages intended for software-mapped modules (tasks) 
are sent to the communication manager which is connected 
to the bus that fires an interrupt to the processor when a new 
message comes in. The processor then collects the message. 
This implementation removes the need for shared memory 

architecture, and ensures the transparency of exploration, 
while moving code blocks from hardware to software, and 
vice-versa.  

The code contains computation timing annotations in 
order to model and evaluate the hardware computation time. 
As previously said, these annotations are ignored for 
modules partitioned in software.  

The positioning system uses the last value given by the 
guiding system to move the rover, as long as a newer value is 
not provided. This causes an undesirable effect on the rover’s 
behavior, as this may cause it to be in motion for a too long 
time, relying on expired data, which can simply lead the 
rover out of its track. Our experiments have demonstrated 
that when the guiding system responds in more than 1000ms, 
the rover cannot properly handle sharp curves, or tend to 
oscillate in its path. This value is considered a hard 
constraint in our design.  

B. FPGA Implementation 
The target hardware platform is the Xilinx Multimedia 

board  [18]. The board includes a Virtex-II XC2V2000-
FF896 FPGA, five memory banks of 512x32 bits each 
directly accessible from the pin out of the FPGA, two clock 
sources and several I/O interfaces. For our application, the 
whole system is implemented in the FPGA and clocked with 
the 27MHz frequency source. The RS232 port is set at 57600 
baud and is used for the communications between the 
positioning and guiding systems. The JTAG interface allows 
downloading the bitstream to configure the FPGA.   

The XC2V2000 FPGA is composed of 10752 slices, 
elementary logic unit combined together to perform the 
desired system functionality. The MicroBlaze soft-processor 
IP and several IP provided by Xilinx, such as the timer, the 
UART Lite, the interrupt controller, the external memory 
controller and the OPB bus are implemented within these 
slices, as depicted in Figure 5. The remaining slices are free 
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Figure 4.  Rover’s Guiding System Specifications 
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Figure 5.  Architecture generated for FPGA, after simulation 



to implement user modules.   

The MicroBlaze program to execute is stored in the 
external memory banks. This increases the cycle latency 
required to execute an operation to 14 cycles.  

V. RESULTS 
Simulation results are taken from an IBM IntelliStation 

M Pro, with dual core P4 clocked at 2.80GHz, with 2GB of 
RAM. Windows XP Professional 2002-SP2 is installed. 

A. Partitioning Capabilities 
With the use of SpaceStudio, we have been able to 

quickly explore the different hardware/software partitions 
exposed in Table III. While 32 partitions are theoretically 
available, not all of them are worth exploring for different 
reasons. An all-hardware partition (No.1) and all-software 
solution (No.7) are worth testing as they represent the 
opposite sides of the spectrum of solutions. Five solutions in 
between were explored. Also, we tend to focus the 
exploration on the Image Analyzer (I) module, since it has 
the main role in this simulation: it polls the UART for new 
data, propagates the information to surrounding modules and 
computes some data as well. The expectation would be that 
this module should be in hardware, although its presence as a 
lone module in the software partition can bring interesting 
numbers on the processor capabilities. 

B. Simulation Results for Simtek 
Using Simtek, a Xilinx MicroBlaze ISS connected to a 

CoreConnect OPB bus model and peripherals were 
instantiated. Memory accesses are set to 14 cycles, to 
reproduce FPGA external SDRAM latency. The clock 
frequency is set of 27 MHz.  

The co-monitoring engine can separately evaluate the 
time hardware and software modules spent on computation 
and on communication. The results of Table II show that the 
Filter (F) and Image Analyzer (I) have a much better 
comparative performance when partitioned in hardware 
rather than software, because a lot of operations can be 
parallelized. However, performance of software modules 
may contradict these early assumptions. 

TABLE II.  SIMULATION CYCLES PER MODULE / ONE FRAME 

 Simulation with Simtek – Raw Computation 
Module Acronym HW latency (cycles) SW latency (Mcycles) 

Ca 39  3.405 
F 320 11.543 
I 388 18.066 
L 10 0.208 
O 35 5.672 

a. Module Acronym Letters are listed in Table I  

 

The architecture exploration will allow to map blocks 
onto the processor or to connect them directly on the shared 
OPB bus. Table III shows the proposed partitions along with 

the required cycles for simulating one frame (that is one loop 
of the Figure 4 model). 

Not surprisingly, placing more modules in software 
increases the overall simulation time, as more sequential 
operations are executed. The point here is to focus on an 
acceptable solution that meets performance constraints and 
needs.  

TABLE III.  SYSTEM PARTITIONS SIMULATED / ONE FRAME 

No HW Partition SW Partition Millions of Cycles 
1 CFILOa ∅ 0.184 
2 CFLO I 11.778 
3 FIO CL 20.268 
4 IF CLO 22.188 
5 IO CFL 24.008 
6 I CFLO 29.080 
7 ∅ CFILO 38.520 

a. Module Acronym Letters are listed in Table I  

 

The following bullets discuss about the different 
partitions shown in Table III. 

• Solution No.1 (all hardware) shows fast bus 
transactions: reading 16 pixels from the UART takes 
3µs, which complies with the input data rate 
constraint.  

• Solution No.2 explores the Image Analyzer (I) 
module in software, alone. As can be seen, this 
module requires a large amount of processing.  

• Solution No.3 explores small complexity modules 
into software. Since many transactions stream 
outside of the processor, requiring many context 
switches, the cycle count is higher than what could 
have been expected. 

• Attention is brought to solution No.4, which has 
Image Analyzer (I) in hardware and Object Detector 
(O) in software. This solution causes the Image 
Analyzer to send messages (i.e. triggers interrupts) 
to the processor at a rate it cannot handle, unless we 
deliberately insert a proper delay between every 
single communication, which we did. Nevertheless, 
only 10% (~2M cycles) differs from the previous 
solution. 

• In solutions No.5 to No.7, modules are switched 
progressively from the hardware partition to the 
software partition, causing the system to require 
more cycles to execute (and more time to simulate, 
though the performance remains constant). While 
solution No.5 is good, solutions No.6 and No.7 
cannot be considered, as their response comes after 
1000ms, i.e. more than 27Mcycles. Indeed, the co-
monitoring of solution No.7 indicates that 100ms 
delays are introduced between some UART 
accesses, a situation that does not comply with the 
0.6ms/byte requirement; data are overwritten into the 



UART. Figure 6, obtained from the co-monitoring 
engine, shows the intensity of data exchanged 
between the Image Analyzer (I) and the UART: 
inter-peaks zeros are wait states because of context 
switches. 

C. Results for FPGA Physical Implementation 
Table IV presents the processing time and area required 

for each user VHDL module. It shows that taking time 
measurements of hardware blocks or software tasks running 
on FPGA rather than in simulation is laborious and brings 
distorted numbers. Furthermore, Table IV presents the area 
needed by a MicroBlaze package, including the MicroBlaze 
processor itself and all its supporting components, i.e. a 
timer, an interrupt controller, an external memory controller 
and the communication manager. When at least one module 
is mapped into software, the whole MicroBlaze package is 
inserted in the final system, increasing the total area. 

TABLE IV.  FPGA LATENCIES AND AREAS PER MODULE / ONE FRAME 

 FPGA Implementation 
Module HW raw 

computation 
latency  
(cycles) 

HW 
communication 

latency  
(Mcycles) 

SW total 
latency  

(Mcycles) 
 

Area 
when 

on bus 
(slices) 

C 39  0.318 3.285 1245 
F 320 2.628 12.519 1193 
I 388 2.854 17.955 1567 
L 10 0.114 0.193 1145 
O 35 3.704 6.115 1173 

Micro-
Blaze 

N/A N/A N/A 1929 

 

From Table IV, it can be observed that most of the 
computation time is spent in the Image Analyzer (I) and the 
Filter (F) modules, which agrees with Table II. Hardware 
raw computation times can be obtained by implementing a 
counter into each module. Another technique was tried, in 
order to include the time for communications, but it brought 
some difficulties. For peeking at a hardware block in 
execution, we mapped all other modules into software and 
the Xilinx timer access function was used to get the current 
tick count before and after the hardware block ran. The 
method required to fire an interrupt, which caused many 
software context switches that significantly affected the 
results: in this example, a context switch processing takes 
about 57,000 cycles.  In any case, this gives a rough estimate 
of the hardware communication times. As for software 
latency, this timer technique is totally applicable, because 
only it affects the results by a couple hundred cycles per 
timer access. Because all modules were mapped into 
software, no undesired context switching occurred. A 
difference of about 8% is observed between simulation and 
FPGA execution. Finally, areas are all alike and rejection of 
one module or another based on area is not a key factor for 
this application. However, placing more modules in software 
frees area, as only one MicroBlaze package is required. 

Table V takes back the mapping configurations explored 
in simulation. The table shows the time needed to process 
one frame and the required FPGA resources to implement 
the seven considered configurations. In general, higher the 
number of modules mapped into hardware is, less time is 
required to process one frame, and higher is the FPGA 
resources utilization. Nevertheless, configuration No.2 has 
the highest hardware cost since the number of slices to 
implement the Image Analyzer module (I) (1567 slices) is 
less than the requirement to implement a MicroBlaze and all 
its supporting components (1929 slices). 

TABLE V.  SYSTEM PARTITIONS FPGA IMPLEMENTED / ONE FRAME 

No HW 
Partition 

SW 
Partition 

Total Latency  
(Mcycles) 

Total Area  
(slices (%)) 

1 CFILO ∅ 0.318 6390 (59.4%) 
2 CFLO I 9.828 6685 (62.2%) 
3 FIO CL 18.198 5929 (55.1%) 
4 IF CLO 23.139 4756 (44.2%) 
5 IO CFL 26.757 4736 (44.0%) 
6 I CFLO 31.509 3563 (33.1%) 
7 ∅ CFILO 35.127 1929 (17.9%) 

 

In this case study, all user modules can be mapped in 
hardware (refer to Table V, No.1). However, in such 
applications, mapping all modules in hardware may need 
FPGA resources larger than it can afford. It is then important 
to determine which user module has the least impact on the 
pure performances once mapped into software. On the other 
hand, mapping all user modules in software may not meet 
performance criteria for some applications.  

With SpaceStudio, it is easy to determine which 
module(s) need to be implemented in hardware. For example 
in our case study, it can be observed that is more appropriate 
to map the Filter (F) in hardware than the Object Detector 
(O) (refer to configurations No.4 and No.5). Once mapped in 
hardware, the Filter module (F) brings a reduction of 3.6M 
cycles compared with the Object Detector (O) with only 20 
slices more, which is a time reduction of 13.5% with an 
0.2% increase of hardware resources. Solution No.5 respects 

 

Figure 6.  One frame data exchange. Horizontal axis is the total time 
of simulation while vertical cumulates communication times between 

UART and SW-partitioned Image Analyzer. 



the 27M cycles for 1 single frame and has minimal area cost, 
therefore, it represents a fair choice for final implementation. 

Finally, a comparison between the simulation cycles of 
Simtek and the observed results of the implementation on 
FPGA show, for simulating a whole frame, an average 
difference of about 10%, which provides a fairly good 
estimation, considering the short time spent to explore 
architectures in simulation (about 2 weeks) versus the time 
spent trying the same directly on the FPGA (about 6 weeks). 

VI. FUTURE WORK AND CONCLUSION 
The Space Codesign framework has shown that it is 

worthwhile and efficient starting designs from TLM 
simulations in SystemC to explore different partition 
mappings and solutions rather than directly starting 
implementation at the RTL level or on FPGA. Our co-
monitoring engine helps in making these decisions by 
providing summarized or detailed statistics about the 
simulations. Design space exploration usually leads 
designers to take enlightened implementation decisions. The 
Space Codesign technology offers a pleasant environment to 
effortlessly explore hardware/software partitions, by using 
drag and drop partitioning from the development 
environment SpaceStudio. 

Future work will include demonstration of the scalability 
of the technique by developing systems with data-intensive 
applications and heterogeneous multi-processor solutions. 
Also, we could provide an area estimation tool with Elix and 
Simtek. In shorter terms we intend providing more detailed 
results for software simulations. Also, we will extend the 
partitioning results to the Elix technology and improve the 
hardware platform timing annotations.  
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