
Space Codesign: A SystemC Framework for
Fast Exploration of Hardware/Software Systems

Luc Filion, Marc-A. Cantin, Laurent Moss, Guy Bois
Microelectronics Research Group

Ecole Polytechnique
Montreal, Canada

{filion, cantin, moss, bois}@grm.polymtl.ca

El Mostapha Aboulhamid
Department of Computers and Operational Research

University of Montreal
Canada

em.aboulhamid@umontreal.ca

Abstract—Electronic System Level has brought new
abstractions for designing systems, which most designers are
not familiar with. The Space Codesign™ SystemC design
framework allows designers to easily model
hardware/software-based systems, starting from a high level
model and refining down to the chip. We propose a rapid
system prototyping toolset that permits co-monitoring of
specifications, effortless platform exploration for
hardware/software partitioning and an automated co-synthesis
for rapid FPGA implementation. We demonstrate the
methodology by implementing the guiding system of a land
rover application. More precisely, we focus on the architecture
exploration effort by looking at the partitioning aspects using
an IBM CoreConnect OPB bus cycle accurate model, and a
MicroBlaze ISS. We collect different mapping results to guide
the implementation down to a Xilinx Virtex-II Pro FPGA.
Results prove that first working at the system level
significantly helps in targeting an efficient hardware/software
solution.

I. INTRODUCTION
Technological innovations have undeniable effects on

circuit design complexity; more complex components,
including on-chip processors, are integrated, and there are
growing customer needs in a narrowing time-to-market era.
These issues lead us to the necessity of rethinking how
engineers design these circuits. One proposed solution,
Electronic System Level (ESL) [1] [2], relieves the design
pressure by raising the level of abstraction for system
modeling, which handles both hardware and software
component specifications and captures constraints. ESL
offers tremendous possibilities for:

• creating and designing simulation platforms containing
processors and coprocessors, communication channels,
memories and peripherals, at different levels of
abstraction;

• creating and verifying functional application models;

• exploring different mappings of a functional application
onto a specified architectural platform, to validate
specification constraints;

• refining to lower abstraction levels (e.g. RTL describing
pins, events and delta cycles, cycle true timing) and real
implementation behaviors, mainly for verification
purposes.

ESL brings new possibilities for system design features
that positively influence the early phases of the system
design flow. Transaction Level Modeling (TLM) [3], a major
subset of ESL, mostly insists on the abstraction of the
communications between processes in order to accelerate
simulations and to provide a reliable analysis of possible
system performances. Transactions can be described at
different levels of abstraction, from high-level message
passing schemes down to typical bus-oriented cycle-by-cycle
transactions. Different optimizations are possible depending
on the desired simulation accuracy. ESL offers to capture
specifications in various ways, based on different in-house
designed simulators, graphical tools or programming
languages, such as C/C++, SystemC, SystemVerilog or
others, or a mix of these solutions.

Well known TLM platforms already exist. For instance,
the SystemC OSCI TLM package [4], proposes to use layers
to classify the different possible abstractions of TLM. Also,
SystemC OCP [5] was one of the first works in the field and.
Finally, GreenBus [6], which objective is to offer an open
source standard interconnect model. Specific needs can also
be filled with custom implementations as well: as an
example, [7] used SystemC for interfacing an ARM
Instruction Set Simulator (ISS) in a SoC implementation.

Depending on the level of abstraction selected,
simulations will perform better than typical Register Transfer
Level (RTL), as shown in [8] and [9]. As said by these
authors, many optimizations are possible to increase
performance up to a factor of 100, but all affect the accuracy
of the simulations, one way or another.

Once the ESL design of the application is done, a
technique for migrating it to a chip is required. Professional
synthesis tools exist but are limited and not open to
everyone’s budget. A general recoding phase is required to
create hardware blocks, software embedded code, interfaces

This project is funded by Univalor and by the National
Sciences and Engineering Research Council of Canada.

and wrappers. Platform-based design is an interesting
compromise to avoid having too much to recode and to meet
time-to-market constraints. Another rapid prototyping
solution is [10], which mixes a set of different tools for
simulating and exporting a DSP-based MP3 decoder
application with an Atmel processor. This brings interesting
results though the methodology is closely coupled to the
architecture they use.

In this paper, we will look at the value of the Space
Codesign toolset for investigating different
hardware/software partitions at a bus cycle accurate level,
using Space Codesign Simtek, which allows the simulation
of a bus cycle accurate version of the specification. We have
developed a base platform including the IBM CoreConnect
OPB Bus, a library of IP and wrappers and the Xilinx
MicroBlaze Instruction Set Simulator (ISS) to emulate a true
implementation of a physical platform. All details on bus
performances, communication and computation times can be
gathered for system performance evaluation using our co-
monitoring engine. Once all simulations are terminated, an
automated co-synthesis process can be used to move down to
Xilinx Virtex-II family FPGA.

Our technology and development environment will be
explained in section II. We used this environment to develop
a land rover case study, described in section III and depicted
in Figure 1. Details of the simulation and FPGA
implementations are given in section IV, while results are
discussed in section V.

II. THE SPACE CODESIGN™ TECHNOLOGY
The Space Codesign technology integrates interesting

features of electronic system design and simulation, such as
drag and drop Hw/Sw partitioning, Hw/Sw co-monitoring
and extensive embedded software support with abstracted
RTOS complexity. With Space Codesign, the use of the
SystemC language is simplified to offer software designers a
transparent solution to the lack of software support in
SystemC [13]. A simplified application programming
interface (API) and a fast communication manager handle all
platform communications.

The development environment (see Figure 2) integrates

these features in an intuitive design framework. This work
originated from SPACE, a platform oriented towards
embedded software design, as presented in [12] [13]. Since
this publication and as described in this paper, several
additions were brought into the SPACE platform, for
instance, different instruction set simulators, a bus cycle
accurate communication model as well as support for a high
abstraction level for software simulations. Moreover, a
complete set of tools, including a graphical user interface and
co-monitoring were integrated.

A. Elix
The Space Codesign Elix technology, sometimes

described as Programmer’s View [17], contains tools for
early stages of the design flow and mainly serves for model
or application validation and fast architecture exploration.
With Elix, one can, in a straightforward but specialized
SystemC environment, create an untimed or timed functional
model of the application to implement. Communication
between SystemC modules (tasks, threads, user modules, or
processes, as preferred) is based on message-passing
rendezvous. Using a shared memory to exchange data is also
possible. Simple methods are available for communications
with modules, or devices (typically slave components) which
removes the usual complexity of system-on-chip
communication protocols. Channel communications can be
untimed or timed according to a user-customized or
predefined bus model delay scheme (such as IBM
CoreConnect PLB/OPB and ARM AMBA).

All simulations bring preliminary results about system
performance results and expected hardware/software
behavior, as the RTOS and a set of RT tasks are getting
integrated into the simulation model. A processor simulator
is run as a SystemC module and executes software code on
the host machine, for faster results than with bus cycle
accurate models. Regardless of the mapping of a specific
module, hardware or software, a proper routing of messages
is performed by the communication manager. These
preliminary results are used to guide lower abstraction design
analysis, using Simtek.

Camera

Guiding
System

Positioning
System Serial Link

Figure 1. Picture of the land rover revealing its main systems

PeripheralsMemory

Space Codesign SIMTEK

codesign
space

Communication
Manager

B C A

F
U TF

T

Space Codesign
ELIX

Hardware
Component

Software
Simulator

Software
Task

Software
Task

RTOS

ISS

IP
Component

Library

Architecture
Component

Library

PeripheralsMemory

Space Codesign SIMTEK

codesign
space

Communication
Manager

B C A

F
U TF

T

Space Codesign
ELIX

Hardware
Component

Software
Simulator

Software
Task

Software
Task

RTOS

ISS

IP
Component

Library

Architecture
Component

Library

Figure 2. The Space Codesign™ Technology

B. Simtek
The Space Codesign Simtek technology can simulate a

bus cycle accurate replica of a real architecture and its
behaviors, including transactions over a specific bus
protocol, hardware wrappers to encapsulate custom IPs, a
collection of user-accessible platform-specific IP devices,
such as memories, timers, controllers and I/Os, as well as
instruction set simulators for cycle-accurate software
execution. This abstraction produces results that can be
analyzed, debugged and monitored.

The communication interface of Simtek is the same as
Elix’s simplifying the refinement of the specifications. At
this stage, users may want to include behavioral timing
annotations to better simulate the execution time of the
hardware user modules. In fact, annotations can be added at
anytime in the design flow: they are simply ignored in an
untimed environment. They are also ignored if the module is
mapped into software, because of the cycle-accurate
execution of software.

C. SpaceStudio
SpaceStudio is an Eclipse-based development

environment [14] for Elix and Simtek. The major advantage
for using Eclipse for Electronic Design Automation is that it
simplifies third-party tool integration. SpaceStudio (Figure
3) lets designers browse through architecture and component
libraries to create a parameterized Elix or Simtek systems.
Architectural exploration lets users discover different system
configurations (e.g. processors and buses, code mapping on
hardware or software, hardware coprocessors, etc.) typically
not considered when working at the Register Transfer Level
(RTL), because the work implied to experiment with such
possibilities is enormous. With the help of SpaceStudio, one
can drag and drop SystemC blocks into a hardware-software
architecture of its own. Once blocks are mapped by the user,
the final architecture and mapping can generate SystemC
code and be executed/debugged or cross-debugged. GNU-
based debuggers are available for the hardware platform, for
SystemC hardware blocks, and for embedded software.
Hardware/software co-debugging offers a better interaction
with the user and the application being designed, when

searching to understand bugs or problems.

System parameter setting is abstracted, kept simple and is
centralized in a configuration manager window accessible
through wizards. Nearly all platform connections are
automatically generated, letting the user focusing on custom
connections. This environment permits to rapidly explore
hardware/software systems, analyze results, fine tune
mapping, regenerate and recompile.

D. Co-monitoring
SpaceStudio integrates real time co-monitoring tools to

maximize programmers’ efficiency. The co-monitoring
engine monitors and analyzes the performance of the system.
The instrumentation of the platform models and API allows
for the collection of metrics on the execution time of
hardware user modules and on channel/bus, memory and
processor usage. Also, a non-intrusive instrumentation of
instruction set simulators monitors RTOS context switches
and calls to communication functions. This powers the
collection of metrics on the execution time of software user
modules and on communications between all user modules,
no matter whether the communications are between
hardware modules, between software modules or are
crossing the hardware/software partition. This co-monitoring
is transparent to user code and is automatically adjusted each
time a user module is moved from hardware to software (or
vice-versa). The collected metrics can be accessed through
an API or viewed through a GUI featuring statistical plots,
global heatmaps or Gantt charts.

For complete technical information about the co-
monitoring features, please refer to [19].

E. Exporting to FPGA
To physically implement Hw/Sw partitioned solutions,

we extend the Space Codesign technology to the
implementation level. At this stage, hardware (e.g.: muxes,
ALUs, decoders, memories) is described in terms of register
transfers executed every clock cycle (i.e. the RTL), and
software is a sequence of instructions including user target
code linked with the RTOS. The transformation from a
transactional level (Elix, Simtek) to an implementation level
is referred to as hardware/software co-synthesis. It is
considered one of the most challenging tasks in embedded
design involving system-on-chips. For the case of an
implementation based on the Xilinx Virtex II-Pro FPGA, an
implementation layer is already provided by the EDK
(Embedded Development Kit) from Xilinx. EDK is an
application for designing embedded programmable systems
based on the Virtex II-Pro. This pre-configured kit includes
all the tools and IP required for designing the
implementation level of a hardware/software system.
Therefore, the Space Codesign technology performs a 3-step
automated co-synthesis process between Simtek and EDK:

• Software generation is completely automatic. The
user software modules/tasks and the RTOS are
compiled for the embedded processor. As a first

Figure 3. The SpaceStudio Development Environment

step, the μC/OS-II RTOS [15] has been selected.
μC/OS-II offers all the advantages of a micro-kernel:
task preemption, a priority based task scheduler and
an interrupt system. As explained in [13], the
SystemC function calls are mapped to µC/OS-II
equivalents.

• The Space Codesign approach is based on IP-reuse.
IP are packaged for reuse at different levels of
abstraction in the design cycle, such as the functional
(SystemC transactional) level and the RTL (VHDL).
IP can come from within a company or from third-
party vendors. Hardware synthesis of user processes
can be accomplished with behavioral synthesis tools
that transform timed functional models into fully
timed RTL models. This synthesis is not performed
by the Space Codesign technology, but by external
FPGA/IC development tools, such as Forte Designs
Cynthesizer [16].

• Communications synthesis is also processed. IBM
CoreConnect wrappers are required to connect IP to
a channel (for the transactional level) and to a bus
(for RTL). As RTL IP wrappers called IPIF (Xilinx
Intellectual Property InterFace) can be automatically
generated using the Xilinx Import Peripheral
Wizard, a corresponding timed functional SystemC
library of IPIF is reproduced for simulation. Also, a
hardware/software communication manager is
generated, which provide access to the message
passing.

Ultimately, SpaceStudio reads the system configuration
created by the user and generates all the required input files
for EDK.

III. A LAND ROVER CASE STUDY
As a case study, the guiding system of a rover simulator

has been implemented. This system is composed of 5 sub-
modules which can independently be partitioned and mapped
to explore, simulate and analyze the performance of different
design possibilities. Figure 1 shows a 3D-model of the rover
itself.

A. Environment Specifications
The world the rover evolves in is a virtual world. For

sake of simplicity and simulation, we describe this world as
an NxN array in which the rover moves. The rover’s location
in this array is denoted as Nx and Ny. Also, the rover has an
angle ω that characterizes its direction in this world (0 being
East, 45° being N-E, and so on).

The rover’s mission is to follow a trail traced on the
ground, and to never leave this trail. The rover is equipped
with a front frame camera that scans the soil; taking pictures
of the trail at different moments in time. The rover has a
Pulse Width Modulator (PWM)-style engine installed on
each front wheel as a forward motion mechanism. The rover
can move with a maximal speed Vmax, which is modulated by

the pulse of the left L and right R engines. Once again, for
sake of simplicity, we set V = ½(R+L)•Vmax, the speed of
the rover at anytime. The rover is controlled by two systems
communicating through a RS232 serial link:

• a positioning system that fires camera snapshots and
calculates the position Nx and Ny and the angle ω of
the rover in the virtual world, within a period of 500
to 1000 ms depending on the operations to
accomplish. RS232 transmissions take 0.6ms per
byte sent. This system is a fixed test bench which
cannot be changed.

• a guiding system that analyzes the camera images to
establish the new direction the rover should take to
follow the trail. This system is implemented using
the Space Codesign technology. Also, in regards to
this new direction, the guiding system calculates the
new L and R pulses to apply to the positioning
system, and sends it these new pulses.

The execution loops indefinitely.

B. Rover Specifications
As a case study, the guiding system of a land rover was

implemented in SpaceStudio to demonstrate the value-added
of the Space Codesign technology and toolset.

The guiding system is split into 5 different modules
described into Table I. It could have been separated even
more or differently or it could be implemented in a complex
manner to represent more closely a real guiding system, the
purpose here is primarily to demonstrate the methodology.

TABLE I. DESCRIPTION OF THE ROVER’S GUIDING SYSTEM

Module Name Description
UART (U) RS232 UART receiving an 8x8 pixel array from the

positioning system’s camera and sending out engine
power coefficients and nearby object detection status.

Image
Analyzer (I)

Hw/Sw module collecting data from UART, analyzing
the image to determine the rover’s direction (ω).

Angle
Calculator (L)

Hw/Sw module converting the direction taken ω into an
angle α the rover should take in regards with the trail.

Engine
Controller (C)

Hw/Sw module determining, based on current and new
direction, as well as previous engine coefficients, the
new coefficients to apply to the left and right engines.
Reduces speed by a factor 2 when undesired objects are
nearby.

Filter (F) Hw/Sw module correcting pixels received from the
camera. Simply corrects the data to threshold values (e.g.
on 8 bits, value 0xFD becomes 0xFF).

Object
Detector (O)

Hw/Sw module observing the image coming in the
guiding system and searching for objects (trees and
rocks). Will notify the Engine Controller when such
objects are detected.

As shown in Figure 4, a UART receives the image
information taken from the positioning system. For our
purposes, this image is an 8x8 pixel frame: each pixel is a
byte representing a soil area crossed or not by the trail. The
received image is first read by the Image Analyzer (I), which

redirect it to a filter that flattens the pixel values. Then, the
analyzer calculates, based on the rover’s direction, the new
direction ε the rover should be taking. This value is sent to
an Angle Calculator which transforms this ε factor into an
angle α. The Angle Calculator can be implemented as a
custom look-up table, or more sophisticatedly as a CORDIC-
like IP, depending on the precision needed.

Then, an Engine Controller takes α and based on the
current speed V, and direction ω, calculates the new L and R
pulses to be applied to the engines. In the meantime, an
Object Detector will receive the pixels and search for
interfering objects nearby the trail. Information about the
presence of objects will be sent to the Engine Controller,
which will generate a reduced speed as these objects are
getting closer.

The positioning system is implemented in a Windows
process. The world of the rover itself is plotted as an
OpenGL scene. Four threads cover the functionality, one for
RS232 communications, one for emulating the camera
sweeping the trail, one for calculating the position of the
rover based on engine L and R values and a last one for
rendering the 3D world.

IV. IMPLEMENTATION DETAILS OF THE GUIDING SYSTEM
Our goal is to implement different hardware/software

configurations of the land rover’s guiding system. All
software partition code will be compiled on µC/OS-II with
our SystemC to OS conversion mechanism.

A. Simulation Implementation
The UART is considered as a device in the system, and

thus, it is fixed into the hardware partition. All other modules
can move from hardware to software, independently.
Moreover, the Xilinx UART-Lite IP has a 16-byte buffer. A
UART was used instead of a TCP/IP link for the somewhat
low data rate of the communications. Nevertheless, the
method is scalable to any rate/type of communications.

Messages intended for software-mapped modules (tasks)
are sent to the communication manager which is connected
to the bus that fires an interrupt to the processor when a new
message comes in. The processor then collects the message.
This implementation removes the need for shared memory

architecture, and ensures the transparency of exploration,
while moving code blocks from hardware to software, and
vice-versa.

The code contains computation timing annotations in
order to model and evaluate the hardware computation time.
As previously said, these annotations are ignored for
modules partitioned in software.

The positioning system uses the last value given by the
guiding system to move the rover, as long as a newer value is
not provided. This causes an undesirable effect on the rover’s
behavior, as this may cause it to be in motion for a too long
time, relying on expired data, which can simply lead the
rover out of its track. Our experiments have demonstrated
that when the guiding system responds in more than 1000ms,
the rover cannot properly handle sharp curves, or tend to
oscillate in its path. This value is considered a hard
constraint in our design.

B. FPGA Implementation
The target hardware platform is the Xilinx Multimedia

board [18]. The board includes a Virtex-II XC2V2000-
FF896 FPGA, five memory banks of 512x32 bits each
directly accessible from the pin out of the FPGA, two clock
sources and several I/O interfaces. For our application, the
whole system is implemented in the FPGA and clocked with
the 27MHz frequency source. The RS232 port is set at 57600
baud and is used for the communications between the
positioning and guiding systems. The JTAG interface allows
downloading the bitstream to configure the FPGA.

The XC2V2000 FPGA is composed of 10752 slices,
elementary logic unit combined together to perform the
desired system functionality. The MicroBlaze soft-processor
IP and several IP provided by Xilinx, such as the timer, the
UART Lite, the interrupt controller, the external memory
controller and the OPB bus are implemented within these
slices, as depicted in Figure 5. The remaining slices are free

1 PIX

1 PIX

32 bit (ε)

32 bit (α)
header / L and R / footer

header / Object Status / footer

header / 64 PIX / footer

1 PIX

32-bit Object
Detection

Status after 64
PIX

from/to the
positioning system

Image
Analyzer

Filter

UART

Angle
Calculator

Engine
Controller

ω

Object
Detector

1 PIX

1 PIX

32 bit (ε)

32 bit (α)
header / L and R / footer

header / Object Status / footer

header / 64 PIX / footer

1 PIX

32-bit Object
Detection

Status after 64
PIX

from/to the
positioning system

Image
Analyzer

Filter

UART

Angle
Calculator

Engine
Controller

ω

Object
Detector

Figure 4. Rover’s Guiding System Specifications

OPB Bus

RS232

UART
Lite

MicroBlaze
Processor

On Chip
Data

Memory
Segment

External Memory
Banks

Sw Tasks and
RTOS

Hw/Sw
Comm.

Manager

SDRAM
Controller

M
o d

ul
e

M
o d

ul
e

M
o d

ul
e

Timer

Interrupt
Controller

In
te

rfa
ce

FPGA Limit FPGA Limit

In
te

rfa
ce

In
te

rfa
ce

OPB Bus

RS232

UART
Lite

MicroBlaze
Processor

On Chip
Data

Memory
Segment

External Memory
Banks

Sw Tasks and
RTOS

Hw/Sw
Comm.

Manager

SDRAM
Controller

M
o d

ul
e

M
o d

ul
e

M
o d

ul
e

Timer

Interrupt
Controller

In
te

rfa
ce

FPGA Limit FPGA Limit

In
te

rfa
ce

In
te

rfa
ce

Figure 5. Architecture generated for FPGA, after simulation

to implement user modules.

The MicroBlaze program to execute is stored in the
external memory banks. This increases the cycle latency
required to execute an operation to 14 cycles.

V. RESULTS
Simulation results are taken from an IBM IntelliStation

M Pro, with dual core P4 clocked at 2.80GHz, with 2GB of
RAM. Windows XP Professional 2002-SP2 is installed.

A. Partitioning Capabilities
With the use of SpaceStudio, we have been able to

quickly explore the different hardware/software partitions
exposed in Table III. While 32 partitions are theoretically
available, not all of them are worth exploring for different
reasons. An all-hardware partition (No.1) and all-software
solution (No.7) are worth testing as they represent the
opposite sides of the spectrum of solutions. Five solutions in
between were explored. Also, we tend to focus the
exploration on the Image Analyzer (I) module, since it has
the main role in this simulation: it polls the UART for new
data, propagates the information to surrounding modules and
computes some data as well. The expectation would be that
this module should be in hardware, although its presence as a
lone module in the software partition can bring interesting
numbers on the processor capabilities.

B. Simulation Results for Simtek
Using Simtek, a Xilinx MicroBlaze ISS connected to a

CoreConnect OPB bus model and peripherals were
instantiated. Memory accesses are set to 14 cycles, to
reproduce FPGA external SDRAM latency. The clock
frequency is set of 27 MHz.

The co-monitoring engine can separately evaluate the
time hardware and software modules spent on computation
and on communication. The results of Table II show that the
Filter (F) and Image Analyzer (I) have a much better
comparative performance when partitioned in hardware
rather than software, because a lot of operations can be
parallelized. However, performance of software modules
may contradict these early assumptions.

TABLE II. SIMULATION CYCLES PER MODULE / ONE FRAME

 Simulation with Simtek – Raw Computation
Module Acronym HW latency (cycles) SW latency (Mcycles)

Ca 39 3.405
F 320 11.543
I 388 18.066
L 10 0.208
O 35 5.672

a. Module Acronym Letters are listed in Table I

The architecture exploration will allow to map blocks
onto the processor or to connect them directly on the shared
OPB bus. Table III shows the proposed partitions along with

the required cycles for simulating one frame (that is one loop
of the Figure 4 model).

Not surprisingly, placing more modules in software
increases the overall simulation time, as more sequential
operations are executed. The point here is to focus on an
acceptable solution that meets performance constraints and
needs.

TABLE III. SYSTEM PARTITIONS SIMULATED / ONE FRAME

No HW Partition SW Partition Millions of Cycles
1 CFILOa ∅ 0.184
2 CFLO I 11.778
3 FIO CL 20.268
4 IF CLO 22.188
5 IO CFL 24.008
6 I CFLO 29.080
7 ∅ CFILO 38.520

a. Module Acronym Letters are listed in Table I

The following bullets discuss about the different
partitions shown in Table III.

• Solution No.1 (all hardware) shows fast bus
transactions: reading 16 pixels from the UART takes
3µs, which complies with the input data rate
constraint.

• Solution No.2 explores the Image Analyzer (I)
module in software, alone. As can be seen, this
module requires a large amount of processing.

• Solution No.3 explores small complexity modules
into software. Since many transactions stream
outside of the processor, requiring many context
switches, the cycle count is higher than what could
have been expected.

• Attention is brought to solution No.4, which has
Image Analyzer (I) in hardware and Object Detector
(O) in software. This solution causes the Image
Analyzer to send messages (i.e. triggers interrupts)
to the processor at a rate it cannot handle, unless we
deliberately insert a proper delay between every
single communication, which we did. Nevertheless,
only 10% (~2M cycles) differs from the previous
solution.

• In solutions No.5 to No.7, modules are switched
progressively from the hardware partition to the
software partition, causing the system to require
more cycles to execute (and more time to simulate,
though the performance remains constant). While
solution No.5 is good, solutions No.6 and No.7
cannot be considered, as their response comes after
1000ms, i.e. more than 27Mcycles. Indeed, the co-
monitoring of solution No.7 indicates that 100ms
delays are introduced between some UART
accesses, a situation that does not comply with the
0.6ms/byte requirement; data are overwritten into the

UART. Figure 6, obtained from the co-monitoring
engine, shows the intensity of data exchanged
between the Image Analyzer (I) and the UART:
inter-peaks zeros are wait states because of context
switches.

C. Results for FPGA Physical Implementation
Table IV presents the processing time and area required

for each user VHDL module. It shows that taking time
measurements of hardware blocks or software tasks running
on FPGA rather than in simulation is laborious and brings
distorted numbers. Furthermore, Table IV presents the area
needed by a MicroBlaze package, including the MicroBlaze
processor itself and all its supporting components, i.e. a
timer, an interrupt controller, an external memory controller
and the communication manager. When at least one module
is mapped into software, the whole MicroBlaze package is
inserted in the final system, increasing the total area.

TABLE IV. FPGA LATENCIES AND AREAS PER MODULE / ONE FRAME

 FPGA Implementation
Module HW raw

computation
latency
(cycles)

HW
communication

latency
(Mcycles)

SW total
latency

(Mcycles)

Area
when

on bus
(slices)

C 39 0.318 3.285 1245
F 320 2.628 12.519 1193
I 388 2.854 17.955 1567
L 10 0.114 0.193 1145
O 35 3.704 6.115 1173

Micro-
Blaze

N/A N/A N/A 1929

From Table IV, it can be observed that most of the
computation time is spent in the Image Analyzer (I) and the
Filter (F) modules, which agrees with Table II. Hardware
raw computation times can be obtained by implementing a
counter into each module. Another technique was tried, in
order to include the time for communications, but it brought
some difficulties. For peeking at a hardware block in
execution, we mapped all other modules into software and
the Xilinx timer access function was used to get the current
tick count before and after the hardware block ran. The
method required to fire an interrupt, which caused many
software context switches that significantly affected the
results: in this example, a context switch processing takes
about 57,000 cycles. In any case, this gives a rough estimate
of the hardware communication times. As for software
latency, this timer technique is totally applicable, because
only it affects the results by a couple hundred cycles per
timer access. Because all modules were mapped into
software, no undesired context switching occurred. A
difference of about 8% is observed between simulation and
FPGA execution. Finally, areas are all alike and rejection of
one module or another based on area is not a key factor for
this application. However, placing more modules in software
frees area, as only one MicroBlaze package is required.

Table V takes back the mapping configurations explored
in simulation. The table shows the time needed to process
one frame and the required FPGA resources to implement
the seven considered configurations. In general, higher the
number of modules mapped into hardware is, less time is
required to process one frame, and higher is the FPGA
resources utilization. Nevertheless, configuration No.2 has
the highest hardware cost since the number of slices to
implement the Image Analyzer module (I) (1567 slices) is
less than the requirement to implement a MicroBlaze and all
its supporting components (1929 slices).

TABLE V. SYSTEM PARTITIONS FPGA IMPLEMENTED / ONE FRAME

No HW
Partition

SW
Partition

Total Latency
(Mcycles)

Total Area
(slices (%))

1 CFILO ∅ 0.318 6390 (59.4%)
2 CFLO I 9.828 6685 (62.2%)
3 FIO CL 18.198 5929 (55.1%)
4 IF CLO 23.139 4756 (44.2%)
5 IO CFL 26.757 4736 (44.0%)
6 I CFLO 31.509 3563 (33.1%)
7 ∅ CFILO 35.127 1929 (17.9%)

In this case study, all user modules can be mapped in
hardware (refer to Table V, No.1). However, in such
applications, mapping all modules in hardware may need
FPGA resources larger than it can afford. It is then important
to determine which user module has the least impact on the
pure performances once mapped into software. On the other
hand, mapping all user modules in software may not meet
performance criteria for some applications.

With SpaceStudio, it is easy to determine which
module(s) need to be implemented in hardware. For example
in our case study, it can be observed that is more appropriate
to map the Filter (F) in hardware than the Object Detector
(O) (refer to configurations No.4 and No.5). Once mapped in
hardware, the Filter module (F) brings a reduction of 3.6M
cycles compared with the Object Detector (O) with only 20
slices more, which is a time reduction of 13.5% with an
0.2% increase of hardware resources. Solution No.5 respects

Figure 6. One frame data exchange. Horizontal axis is the total time
of simulation while vertical cumulates communication times between

UART and SW-partitioned Image Analyzer.

the 27M cycles for 1 single frame and has minimal area cost,
therefore, it represents a fair choice for final implementation.

Finally, a comparison between the simulation cycles of
Simtek and the observed results of the implementation on
FPGA show, for simulating a whole frame, an average
difference of about 10%, which provides a fairly good
estimation, considering the short time spent to explore
architectures in simulation (about 2 weeks) versus the time
spent trying the same directly on the FPGA (about 6 weeks).

VI. FUTURE WORK AND CONCLUSION
The Space Codesign framework has shown that it is

worthwhile and efficient starting designs from TLM
simulations in SystemC to explore different partition
mappings and solutions rather than directly starting
implementation at the RTL level or on FPGA. Our co-
monitoring engine helps in making these decisions by
providing summarized or detailed statistics about the
simulations. Design space exploration usually leads
designers to take enlightened implementation decisions. The
Space Codesign technology offers a pleasant environment to
effortlessly explore hardware/software partitions, by using
drag and drop partitioning from the development
environment SpaceStudio.

Future work will include demonstration of the scalability
of the technique by developing systems with data-intensive
applications and heterogeneous multi-processor solutions.
Also, we could provide an area estimation tool with Elix and
Simtek. In shorter terms we intend providing more detailed
results for software simulations. Also, we will extend the
partitioning results to the Elix technology and improve the
hardware platform timing annotations.

ACKNOWLEDGMENT
The authors cheerfully thank Sébastien Fontaine who

fervently helped for presenting the results, and also the
project team, always hardworking: Benoit Pilote, Jérôme
Chevalier, Maxime De Nanclas, Ahmed Faiz and Cédric
Migliorini.

REFERENCES
[1] V. Perrier “A look inside electronic system level (ESL) design”,

EEdesign.com. March 2004. Online @ http://www.embedded.com/
showArticle.jhtml?articleID=18402916 (last visited September
2006).

[2] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, A. Sangiovanni-
Vincentelli. “System-Level Design: Orthogonalization of Concerns
and Platform-Based Design.” IEEE Transactions on Computer-Aided

Design and Integrated Circuits and Systems. Vol. 19, No. 12,
December 2000. pp 1523-1543.

[3] L. Cai L., D. Gajski “Transaction Level Modeling: An Overview”
CODES. Oct. 2003.

[4] A. Rose, S. Swan, J. Pierce, J.-M. Fernandez. “Transaction Level
Modeling in SystemC” Draft 1. http://www.systemc.org.

[5] A. Haverinen, M. Leclercq, N. Weyrich, D. Wingard. “SystemC
based SoC Communication Modeling for the OCP Protocol”
Whitepaper. 2002. http://www.ocp-ip.org .

[6] W. Klingauf, R. Guenzel, O. Bringmann, P. Parfuntseu, M. Burton.
“GreenBus – A Generic Interconnect Fabric for Transaction Level
Modelling”. Proceedings of the 43rd annual conference on Design
automation. DAC 2006, San Francisco, USA, pp 905-910.

[7] S. Pasricha. “Transaction Level Modeling of SoC with SystemC 2.0”.
Pasricha - Synopsys User Group Conference, 2002.

[8] T. Rissa, A. Donlin, W. Luk. “Evaluation of SystemC Modelling of
Reconfigurable Embedded Systems”. Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition. DATE
2005. Munich, Germany.

[9] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, C.
Turchetti. “Transaction-Level Models for AMBA Bus Architecture
Using SystemC 2.0”. Proceedings of the Design,Automation and Test
in Europe Conference and Exhibition. DATE 2003.

[10] J. Bieger, S. A. Huss, M. Jung, S. Klaus, T. Steininger. “Rapid
Prototyping for Configurable System-on-a-Chip Platforms: A
Simulation Based Approach”. Proceedings of the 17th International
Conference on International Conference on VLSI Design (VLSID
2004). pp 577- 582.

[11] R. Goering “System-level design coming for software” EETimes
Print Front September 2006. (last visited September 2006).
http://www.eetimes.com/issue/fp/showArticle.jhtml?articleID=19250
1051

[12] O. Benny, M. Rondonneau, J. Chevalier, G. Bois, E. M. Aboulhamid,
and F.-R. Boyer, "SoC Software Refinement Approach for a SystemC
Platform," Proc. DVCon 2004, Design & Verification Conference &
Exhibition, San Jose, CA, March, 2004, pp. 7 pages.

[13] J. Chevalier, M. de Nanclas, L. Filion, O. Benny, M. Rondonneau, G.
Bois, E.M. Aboulhamid. “A SystemC Refinement Methodology for
Embedded Software”. Design and Test of Computers. March/April
2006 (Vol. 23, No. 2) pp. 148-158.

[14] Eclipse – an open development platform. http://www.eclipse.org/
[15] Labrosse J. J. “Microc/OS II: The Real-Time Kernel”. 2nd Ed. CMP

Books. 2002. 605 pages
[16] Forte Design Systems. Cynthesizer 3.0.

http://www.forteds.com/highleveldesign/index.asp
[17] A. Donlin “Transaction Level Modeling: Flows and Use Models”.

CODES+ISSS’04, September 2004.
[18] Xilinx Inc. Multimedia Board.

http://www.xilinx.com/products/boards/multimedia/
[19] L. Moss, M. de Nanclas, L. Filion, S. Fontaine, G. Bois, E.M.

Aboulhamid. “Seamless Hardware/Software Performance Co-
Monitoring in a Codesign Simulation Environment with RTOS
Support”. Design, Automation and Test in Europe Conference and
Exhibition (DATE’07), 6 pages. “In Press”.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

